Upper Elementary STEM

Overview:

Elementary STEM for 3rd grade through 5th grade is an enhancement class that continues to build the foundation for understanding the relationship among science, technology, engineering, and math. This class uses both the engineering design process and the scientific method when investigating simple machines and new concepts. Students will learn to use critical and analytical thinking skills and experience in teamwork as they strive to problem solve new challenges.

Course Rationale:

Elementary STEM creates student interests in science, technology, engineering, and math. It opens the door for students to become tomorrow's movers and shakers by providing a foundation for middle school, high school and beyond. Students need to have a robust STEM curriculum and it needs to begin at the elementary level.

Grades: 3rd Grade - 5th Grade

<u>Unit Title</u>	<u>Length of Unit</u>
Unit 1: Review of STEM Practices	_4 - 8 weeks
Unit 2: Technology	8 - 12 weeks_
Unit 3: Engineering Curriculum Enhancement	12 - 16 weeks

Elementary STEM Curriculum

Course Title: <u>3-5 Grades</u> Unit Title: <u>Review of STEM Practices</u> Length of Unit <u>4-8 weeks</u>

Page <u>1</u> of <u>4</u>

Standards & Benchmarks	Essential Questions, Learning Targets & "I can" Statements	Key Vocabulary	Activities/Project	Resources	Evidence of Understanding
3-5 ETS1-1. Define a simple design problem reflecting a need or a want that includes specified criteria for success and constraints on materials, time, or cost. 3-5 ETS1-2. Generate and compare multiple possible solutions to a problem based on how well each is likely to meet the criteria and constraints of the problem. 3-5-ETS1-3. Plan and carry out fair tests in which variables are controlled and failure points are considered to identify aspects of a model or prototype that can be improved.	Continue the development of the students' education in STEM and apply the rigor of science, technology, engineering and mathematics content as well as incorporating skills and practices of other curriculum disciplines into their learning. I CAN Statements: I can apply concepts of science, technology, engineering, and mathematics in order to understand and address real life issues and solve problems or challenges. I can engage in inquiry. I can engage in logical reasoning. I can collaborate as a	Scientist Technology Engineer Mathematician Question Observe Hypothesis Experiment Record Measure Data Analyze Conclude Work together/ Brainstorm Challenge Constraint Criteria Explore Investigate Problem solve	This unit will continue the development of students' STEM education. They will begin to apply the rigor of science, technology, engineering and mathematics content as well as incorporating skills and practices of other curriculum disciplines into their learning. Students will: understand what an engineer, scientist, technologist, and mathematician is apply the	Mariana Becomes a Butterfly Aisha Makes Work Easier Infinity and Me Timeless Thomas: How Thomas Edison Changed Our Lives Stronger Than Steel: Spider Silk DNA and the Quest for	What will be the evidence of learning? Formative Assessments Creating Models, Facilitation and questioning techniques, sharing of observations and reasoning through results, drawings and approximations of writing and labeling of investigations Summative Assessment Performance assessment: Communicate and demonstrate findings from investigation and

STEM team member.	Communicate		engineering	Better	solution to problem.
I can understand how to	Design/Create		design process	<u>Bulletproof</u>	co.arion to problem.
design a solution to a	Solution	•	employ creative	Vests, Sutures,	
specific problem using	Evaluate		and careful	and Parachute	
constraints on materials,	Evidence		thinking to solve problems	Rope	
time, or cost.	Making sense		troubleshoot		
I can create and evaluate	Model		and learn from	Edge of the	
several possible solutions to			failure	Universe: A	
a problem based on how well	Computer	•	understand the	Voyage to the	
the answer met the specific	Internet		role of materials and	Cosmic Horizon	
criteria and constraints of	iPad		their	and Beyond	
the problem.	Apps		properties in	·	
Essential Questions:	Keyboard		engineering	<u>Citizen</u>	
What kinds of work do	Cell phone		solutions	<u>Scientists</u>	
engineer do?	Camera				
Can you explain the	Radio			Get the Scoop	
engineering design process?	Tools			on Animal Poop!	
What kinds of work do					
scientists do?				<u>Life in the</u>	
Can you explain the				<u>Ocean</u>	
scientific process?					
Name different kinds of				Rachel Carson	
technology?				and Her Book	
What kinds of work do				That Changed	
technologists do?				the World	
What kinds of work do					
mathematicians do?					

	T	
!		Websites:
!		
!		http://kids.nat
!		
!		<u>ionalgeographic</u>
!		<u>.com</u>
!		
!		http://www.dis
!		
!		<u>coveryeducatio</u>
!		<u>n.com</u>
1		
1		
		hattan // a aladan ua
!		http://askdrun
!		iverse.wsu.edu/
!		
!		1.1117.112.1
!		http://pbskids.
!		org/designsqua
!		<u>d</u>
!		_
!		1.11
!		http://www.eg
!		<u>fi-k12.org</u>
!		
		http://www.ex
!		
!		<u>ploratorium.ed</u>
1		<u>u</u>
!		
!		http://www.ex
!		<u>tremescience.c</u>
!		<u>om</u>
<u> </u>	I .	

http://science. howstuffworks. com http://www.msi chicago.org https://www.ty
http://www.msi chicago.org https://www.ty
http://www.msi chicago.org https://www.ty
http://www.msi chicago.org https://www.ty
chicago.org https://www.ty
chicago.org https://www.ty
https://www.ty
<u>nker.com</u>
http://www.nas
<u>a.gov/audience</u>
/forstudents/i
ndex.html
INCEX.ITTIII
http://www.nas
a.gov/educatio
<u>n/semaa</u>
http://www.pb
s.org/wgbh/nov
http://www.sci
encebuddies.or
http://www.sci

		encechannel.co m	
		http://stem- works.com	
		https://www.te	

Elementary STEM Curriculum

Course Title: 3-5th Grade Unit Title: Technology Length of Unit: 8-12 weeks

Page $\underline{1}$ of $\underline{3}$

Standards & Benchmarks	Essential Questions,	Key Vocabulary	Activities/Projects	Resources	Evidence of Understanding
	Learning Targets &				
	"I can" Statements				
3-5-ETS1-1.	Students often think	Technology	Kids will learn:	Books:	What will be the evidence
Define a simple design	of technology as a	Computer			of learning?
problem reflecting a	device with a power	iPad	This unit will provide students	The Boy Who	
need or a want that	source. Not all	Internet	with the understanding of what	Harnessed the Wind	Formative Assessments
includes specified	technology is digital.	Apps	technology is and how it		Facilitation and
criteria for success and	With the activities	Keyboard	pertains to their lives. They will	Frozen in Time:	questioning techniques,

constraints on	planned, STEM	Cell phone	use the definition of technology	Clarence Birdseye's	sharing of observations,
materials, time, or cost.	components will be	Camera/Digital	 which includes any product 	Outrageous Idea	and reasoning through
3-5-ETS1-2.	applied and the	Tools	made by humans to meet a	About Frozen Food	results, drawings, and
Generate and compare	Engineering Design		want or need.		approximations of writing,
multiple possible	Process practiced.	Constraints		Mr. Ferris and His	designing, and labeling of
solutions to a problem		Criteria	The primary goal of this unit is	<u>Wheel</u>	investigations.
based on how well	I CAN Statements:	Mechanical	to challenge youth to think		Use appropriate tools
each is likely to meet		Engineer	creatively and use the	What Do You Do With	strategically
the criteria and	I can understand the	Engineering	Engineering Design Process to	a Problem?	
constraints of the	definition of	Design	design their own technologies		
problem.	technology.	Process	that are able to measure time.	Girls Think of	Summative Assessment
3-5-ETS1-3.		Engineer		Everything: Stories of	Performance
Plan and carry out fair	I can have basic		Students will become familiar	Ingenious Invention by	assessments
tests in which variables	knowledge of what	Dominoes	and interact with a variety of	<u>Women</u>	Communicating and
are controlled and	part technology	Hourglass	technology tools as a part of		demonstrating the
failure points are	plays in STEM.		their academic program in	Women in Science: 50	Engineering Design
considered to identify		Sundials and	areas such as: communication,	Fearless Pioneers	Process through the
aspects of a model or	I can talk about how	Obelisks	documenting events, using	Who Changed the	investigations in the
prototype that can be	inventors/engineers		informational software and	<u>World</u>	activities
improved.	earlier have shared		websites. They will benefit from		Quizzes
	their ideas and how	Candle Clock	exposure to more advanced	Video:	
	they have changed	A water clock	applications that they will		
	over time.	or clepsydra	eventually use independently or	Objectified	
		or dicpsyara	in a group	http://tinyurl.com/kwlee	
	I can recall relevant			<u>2r</u>	
	information from lab				
	experiences.		This unit will provide students	Engineering	
	-		with the background of	Everywhere Special	
	I can gather relevant		technology for example they	Report video:	
	information from		will discover and learn about is	http://www.eie.org/time	
	print and digital		timekeeping devices.		
	sources.				
			Students will use their		
	I can work well in a		engineering skills to develop an		
	team trying out		accurate timer. The overview		
	ideas and designs.		of the activities in this unit is as		
			follows:		
	I can also				
	troubleshoot my		Activity 1: Technology Through		
	work and improve		Time		

designs.	Youth are introduced to a	
	definition of technology and	
I can persevere	consider how technologies are	
through the	IMPROVED over time. They will	
Engineering Design	match pairs of older and	
Process in making a	modern technologies and	
water timing	IMAGINE ways to IMPROVE	
technology.	the modern version.	
· · · · · · · · · · · · · · · · · · ·	Activity 2: Youth explore their	
	own perceptions of time.	
	Students will learn their	
	individual perceptions of time	
	are not always accurate without	
	the use of any modern	
	timekeeping technology. Their	
	perceptions of time will change	
	based on the activities they are	
	participating in. Students will	
	come to the conclusion that	
	engineers developed	
	technologies to keep an	
	accurate account of time.	
	accurate account of time.	
	Activity 3: Youth will engineer a	
	timer by exploring the natural	
	rhythms of falling dominoes.	
	Students will be encouraged to	
	think creatively about ways time	
	is measured. They will identify	
	and understand how regular	
	and repeating events, like	
	falling dominoes, can be used	
	to track time.	
	to track arror	
	Activity 4: Creating a Water	
	Timer to showcase	
	Timor to snowodo	
	Youth will learn about the	
	history of water timers dating	
	back as early as 16 th century	
	and do early do no contains	

B.C. They will use the	
Engineering Design Process to	
create a water timer that	
accurately times either 1 or 2	
minutes. Students will work in a	
team until all improvements are	
complete. Students will	
showcase their water timing	
technologies to show its	
accuracy.	

Elementary STEM Curriculum

Course Title: 3-5th Grade Unit Title: Engineering Curriculum Enhancement Length of Unit: 12 - 16 weeks

Page $\underline{1}$ of $\underline{2}$

Standards & Benchmarks	Essential Questions,	Key Vocabulary	Activities/Projects	Resources	Evidence of Understanding
	Learning Targets &				
	"I can" Statements				
3-5-ETS1-1.	Students often think	Constraints	Kids will learn:	Books:	What will be the evidence
Define a simple design	of technology as a	Criteria			of learning?
problem reflecting a	device with a power	Mechanical	This unit will provide students	The Boy Who	
need or a want that	source. Not all	Engineer	with the understanding of	Harnessed the Wind	Formative Assessments
includes specified	technology is digital.	Engineering	machines and mechanisms and		Facilitation and
criteria for success and	With the activities	Design	how it pertains to their lives.	Frozen in Time:	questioning techniques,
constraints on	planned, STEM	Process		Clarence Birdseye's	sharing of observations,
materials, time, or cost.	components will be	Engineer	They will apply the	Outrageous Idea	and reasoning through
3-5-ETS1-2.	applied and the		understanding of simple	About Frozen Food	results, drawings, and
Generate and compare	Engineering Design	Simple	machines and build structures,		approximations of writing,

multiple possible	Process practiced.	Machines:	using the Engineering Design	Mr. Ferris and His	designing, and labeling of
solutions to a problem		Screw	Process.	Wheel	investigations.
based on how well	I CAN Statements:	Inclined Plane		<u></u>	Use appropriate tools
each is likely to meet		Wedge	The primary goal of this unit is	What Do You Do With	strategically
the criteria and	I can understand the	Wheel and	to challenge youth to think	a Problem?	
constraints of the	definition of	Axle	creatively, work collaboratively,	<u> </u>	
problem.	technology.	Lever	and persevere.	Girls Think of	Summative Assessment
3-5-ETS1-3.	l toormology.	Pulley	and percevere.	Everything: Stories of	Performance
Plan and carry out fair	I can have basic	l andy	Students will become familiar	Ingenious Invention by	assessments
tests in which variables	knowledge of what	Collaboration	and interact with a variety of	Women	Communicating and
are controlled and	part technology	Working in	ways. They will find solutions	<u> </u>	demonstrating the
failure points are	plays in STEM.	groups	and have an opportunity to test	Women in Science: 50	Engineering Design
considered to identify	piayo iii o i ziviii	Communicatio	several different builds to allow	Fearless Pioneers	Process through the
aspects of a model or	I can talk about how	n	for improvement and	Who Changed the	investigations in the
prototype that can be	inventors/engineers	Revising to	understanding.	World	activities
improved.	earlier have shared	improve		<u></u>	Quizzes
	their ideas and how			Video:	4.0
	they have changed	Research	Students will use their		
	over time.	iPad	engineering skills to develop an	Objectified	
			basic understandings of simple	http://tinyurl.com/kwlee	
	I can recall relevant		machines and their practical	<u>2r</u>	
	information from lab		application.	_	
	experiences.			Engineering	
			Students develop good	Everywhere Special	
	I can gather relevant		communication skills working in	Report video:	
	information from		groups of two and four -	http://www.eie.org/time	
	print and digital		depending on the build and its		
	sources.		criteria and constraints.	Various	
				teachertube/youtube	
	I can work well in a		Students will learn to research	videos on simple	
	team trying out		an American inventor and	machines and how	
	ideas and designs.		explain their importance to our	they work	
			society.		
	I can also				
	troubleshoot my		Students begin to develop skills		
	work and improve		to create and design their own		
	designs.		experiments.		
	I can persevere				
	through the				

l w	Engineering Design Process in making a water timing echnology.		